
www.manaraa.com

ORIGINAL ARTICLE

A dynamic multi-agent-based scheduling approach for SMEs

Ali Vatankhah Barenji1 & Reza Vatankhah Barenji2 & Danial Roudi1 &

Majid Hashemipour1

Received: 13 February 2016 /Accepted: 5 August 2016 /Published online: 15 August 2016
Springer-Verlag London 2016

Abstract In modern manufacturing systems with computa-
tional complexities, decision-making with respect to dynamic
rescheduling and reconfiguration in case of internal distur-
bances is an important issue. This paper introduces a multi-
agent-based dynamic scheduling system for manufacturing
flow lines (MFLs) using the Prometheus methodology (PM)
considering the dynamic customer demands and internal dis-
turbances. The PM is used for designing a decision-making
system with the feature of simultaneous dynamic
rescheduling. The developed system is implemented on a real
MFL of a small- and medium-sized enterprise (unplasticized
polyvinyl chloride (uPVC) door and window) where the dy-
namic customer demands and internal machine break downs
are considered. The application has been completely modeled
using a Prometheus design tool, which offers full support to
the PM, and implemented in JACK agent-based systems.
Each agent is autonomous and has an ability to cooperate
and negotiate with other agents. The proposed decision-
making system supports both static and dynamic scheduling.
A simulation platform for testing the proposed multi-agent
system (MAS) is developed, and two real scenarios are de-
fined for evaluating the proposed system. The analysis takes
into account the comparisons of the overall performances of
the systemmodels using theMAS scheduling and convention-
al scheduling approaches. The result of simulation indicates
that the proposedMAS could increase the uptime productivity

and the production rate of flexible flow-line manufacturing
systems.

Keywords Multi-agent system . Dynamic scheduling .

Flow-linemanufacturing . Prometheusmethodology . JACK
platform

1 Introduction

Over the last decade, small- and medium-sized enterprises
(SMEs) have gained importance, indicating the economic
growth of a country. In addition, larger establishments have
lost ground in terms of market share and employment [1].
Scheduling and control problems in the SMEs differ from
those of the large-sized enterprises in three ways. First, in
SMEs, an order is accepted based on the availability and ca-
pacity of the right type of equipment. Second, the number of
job types is much higher than the large enterprises, and con-
sequently, the amount of manufacturing data to be generated
per unit of work is very high. Third, the demand is dynamic
[2]. Therefore, the process planning and continuity of activi-
ties aiming at the flexible use of the manufacturing equipment
and human resources are vital concerns [3, 4]. The conven-
tional scheduling systems in SMEs have the following issues
[5, 6]: (1) the systems are not reactive to parallel requests—the
conventional systems are typically unable to manage a set of
simultaneous events that must be addressed; (2) lack of distri-
bution—the scheduling and control system uses a centralized
decision support system, which is located on a host computer;
and (3) weak response to reconfiguration in the case of distur-
bances even though a large number of internal and/or external
disturbances may occur in the system.

A dynamic scheduling system (DSS), which allows enter-
prises to optimally match the desired customer demands with

* Ali Vatankhah Barenji
Ali.vatankhah@cc.emu.edu.tr

1 Department of Mechanical Engineering, Eastern Mediterranean
University, Famagusta, North Cyprus Via 10, Mersin, Turkey

2 Department of Industrial Engineering, Hacettepe University, Beytepe
Campus, 06800 Ankara, Turkey

Int J Adv Manuf Technol (2017) 89:3123–3137
DOI 10.1007/s00170-016-9299-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-016-9299-4&domain=pdf

www.manaraa.com

their plans, is a time-dependent system [7]. In this system,
decisions are taken based on the correctness of both logic
and time, resulting in a considerably increased scheduling
efficiency [8]. The logic correctness fulfills the constraints
with respect to the resource capacity and order of operations,
whereas, time correctness satisfies the time-based constraints
such as interoperation and due dates [4]. DSSs are appropriate
for systems with several internal and/or external disturbances
(e.g., order changes and machine failures) [9]. In the literature,
two different approaches are mainly used for solving the dy-
namic scheduling problems, namely, a dynamic planning-
based approach and dynamic best effort approach [10]. In
the dynamic planning-based approach, scheduling starts when
a job arrives, and the job is accepted only if timeliness is
guaranteed [11]. Whereas, in the dynamic best effort ap-
proach, the ability to schedule a job is not checked [12].
According to Yoon and Shen [13], DSSs can be categorized
into hard and soft deadline systems. In the hard deadline sys-
tems, time correctness is crucial for all decisions, whereas in
the soft deadline systems, time correctness is important but not
crucial. Hence, dynamic scheduling for manufacturing flow
lines (MFLs) is adequate for hard time-dependent systems and
requires a dynamic planning-based approach [14]. A dynamic
planning-based approach with dynamic customer demands,
mainly reported in the computer science literature, is studied
to allocate a central processing unit (CPU) and memory space,
and a job typically requires only a single resource. For in-
stance, Ramamritham et al. [15] proposed a scheduling algo-
rithm for real-time multiprocessor systems with hard dead-
lines. The scheduling algorithm uses a search option to find
a feasible schedule. Unlike the examples in the computer sci-
ence literature, the resources in MFLs include machines and
material handling systems (MHSs), and a job typically uses a
subset or the entire set of resources. Recently, agent technol-
ogies have been applied for dynamic planning-based schedul-
ing in manufacturing systems. For example, Yoon and Shen
[16] constructed a multi-agent system (MAS) for scheduling a
semiconductor manufacturing factory in which four types of
agents were designed and developed. A scheduling agent de-
termined an optimal scheduling plan by estimating a few pos-
sible scenarios.

The MAS provides a new method for solving distributed,
dynamic scheduling problems. Extensive research literatures
exist, which address many scheduling issues of modern
manufacturing companies with agent technology [17, 18].
The MAS has often been employed with a contract-net nego-
tiation protocol [19] for solving various problems of schedul-
ing and failure handling in manufacturing tasks. For schedul-
ing manufacturing tasks, Valckenaers and Van Brussel [20]
have utilized an agent-based decentralized manufacturing ex-
ecution system composed of exploring ant agents for provid-
ing a look ahead into dynamic resource scheduling problems.
Kaplanoğlu [21] proposed a real-time scheduling system

based on the multi-agent system, which is less sensitive to
the fluctuations in demand or available vehicles than the tra-
ditional transportation planning heuristics (local control, serial
scheduling) and provides flexibility by solving local prob-
lems. To set up dispatching rules, Chen et al. [22] implement-
ed a distributed agent-based system by applying a multi-agent
technique to a multi-section flexible manufacturing system,
which assists the agents in choosing suitable dispatch rules
pertaining to the dispatching region and resolves the entire
dispatching problems of a manufacturing system by agent
cooperation. In most of the existing literatures, a specific
methodology is introduced to the design and development of
the MAS, whereas for SMEs, it is not possible to employ a
newmethodology for the development of theMAS because of
the limited budget of the SMEs. The best way to overcome
this concern is to use a general-purpose design methodology
[23]. An effort in this regard can be found in [24].

In an effort to highlight the effect of internal disturbance on
the manufacturing control system, the authors in their past
contributions designed and developed a multi-agent-based ar-
chitecture for scheduling and control in the manufacturing
industry where they employed a radio-frequency identifica-
tion (RFID) technology (instead of a barcode system) for
tracking and tracing the parts [25]. The developed scheduling
and control system was tested on an educational manufactur-
ing shop, and the extracted results were compared with those
of the conventional centralized scheduling system [9, 25] for
the manufacturing scenarios with and without internal distur-
bances (machine breakdown). The results highlight the poten-
tial of employing both the MAS and RFID technology as new
paradigms for retrofitting the current manufacturing system.
Two common ways to test the internal disturbances of a sys-
tem and the performance of a control architecture are the use
of small prototype shops and virtual platforms. The best re-
sults can be obtained by using a physical system; however, it
is very expensive and time consuming. Recently, a simulation
test platform has been developed by the authors for examining
the scheduling process considering internal disturbances [26].
For modeling a shop, a process-oriented colored Petri net
(CPN) modeling method is employed using a top-down ap-
proach. The result of the study justifies the applicability of the
developed tool and introduces a generic and flexible test plat-
form for examining any control architecture.

The literatures referred by the authors indicate that there are
some valuable efforts in the design and development of DSSs
using the MAS with general-purpose methodologies or spe-
cific methodologies [27, 28]. In a few of these reports in some
ways, the dynamic customer demand and/or internal distur-
bances of the system are considered [29]. Since all these
MASs are implemented just on autonomous decision-
making platforms, the real response and breakdowns of the
machines in the system are not well-thought-out. Therefore,
this paper presents a multi-agent-based DSS for SMEs

3124 Int J Adv Manuf Technol (2017) 89:3123–3137

www.manaraa.com

considering both together the dynamic customer demands and
internal disturbances of MFLs. A multi-agent DSS is devel-
oped based on the Prometheus methodologyTM (PM) because
this methodology is a general-purpose design methodology
for developing software agent systems and is not tied to any
specific model in the software platform [25]. For modeling the
internal disturbances of the system, a simulation test platform
[3] is linked to the developed multi-agent-based DSS. A case
study is conducted on a company manufacturing doors and
windows. In this study, the dynamic order behavior and the
capability to reconfigure with respect to the internal distur-
bances of a system are considered for a wide range of
products.

The rest of the paper is organized as follows. Section 2
gives the detailed information about the stages of the PM
and its capabilities. Section 3 describes the case study and
highlights the drawbacks ofMFLs. It also describes the design
phases of the system for dynamic customer demands.
Section 4 presents the proposed MASs and the employed

simulation platform. Section 5 presents the conclusion and
some future works.

2 Prometheus methodology

The PM is a general-purpose design methodology for devel-
oping software agent systems in which it is not tied to any
specific model of the software platform [30]. The PM defines
the detai led processes for specifying, designing,
implementing, and testing/debugging agent-oriented software
systems. In addition to the detailed processes (and several
practical tips), it defines a range of artifacts produced during
the processes. The PM consists of four steps, three of which
deal with the design of the agent-oriented software and the last
step deals with the implementation of the system. In this study,
JACK is selected as a platform for implementing the proposed
MAS. Figure 1 illustrates the design steps of the PM.

Fig. 1 Design steps of the PM [23]

Int J Adv Manuf Technol (2017) 89:3123–3137 3125

www.manaraa.com

As shown in Fig. 1, the design steps of the PM are as
follows [30].

The system specification phase focuses on the iden-
tification of the goals and basic functionalities of the
system along with the inputs (precepts) and outputs
(actions).

The architectural design phase uses the outputs of the
previous phase to determine the types of agents in a
system and their interaction.

The detailed design phase focuses on the internals of each
agent and the ways to accomplish the tasks of the agents
within the overall system.

By adhering to the PM, the first step is to define the
system specification. The system specification defines
the actors participating in the system, describes the sce-
narios of participation by defining the initial functionality
descriptors, and finally identifies the system goals. The
actors are the entities using the system or interacting

Fig. 3 Goal overview diagram of the system

Fig. 2 Layout of the
manufacturing MFL of Yaran
Bahar Golestan

3126 Int J Adv Manuf Technol (2017) 89:3123–3137

www.manaraa.com

with the system in some way. The scenarios describe the
occurrence of interactions [31]. The next step is to iden-
tify the tasks for each of these actors. The designer can
identify the scenarios that each agent may act upon by
elaborating the tasks assigned to each actor in the sys-
tem. After identifying the scenarios, the designer can use
them to determine the goals of the system. From these
initial goals, the designer can determine the additional
sub-goals. The goals are grouped into similar functions,
and the duplicate goals are removed. The intention is to
describe the functionality descriptors of the system. The
next step is to identify the precepts in the system. The
precepts are the types of information input to the system

from the external environment. The designer can identify
the precepts by studying the previous artifacts. The next
stage in the system specification process is to describe
the actions. The actions are defined by the information
sent from the system to the external environment. The
final stage of the system specification process is to de-
velop the initial functionality descriptors. This groups the
actions, precepts, and goals into a description that can be
used in the future design. Once the system specification
is defined, the architectural design of the system com-
mences. The data coupling diagram can be produced
from the initial functionality and data descriptors devel-
oped as a part of the system specification. The next step

Fig. 5 System overview diagram in the architectural design stage

Fig. 4 System role overview

Int J Adv Manuf Technol (2017) 89:3123–3137 3127

www.manaraa.com

in the architectural design is to identify the agents
existing within the system and create an agent acquain-
tance artifact. After defining the agents, in a detail design
stage, the interactions between these agents can be de-
fined. This is done with an interactive diagram and a
protocol diagram. Additional interaction diagrams are
produced for each scenario represented in the analysis
overview diagram. The interaction and protocol diagrams
describe the scheduling problem that must be coordinated
among the participants in the process. It should be noted
that the following artifacts produced using the PM were
not produced in the first attempt [32]. Therefore, the
artifacts and descriptions in this paper are the results of
several iterations over the same problem; each iteration
refines the design until an acceptable solution was
obtained.

3 Case study and design of the proposed multi-agent
DSS

Yaran Bahar Golestan (YBG) is a small enterprise that pro-
duces make-to-order unplasticized polyvinyl chloride (uPVC)
doors and windows by using automated machines. YBG is

located in the north of Iran and provides doors and windows
mainly to the internal market orders. The company has two
main departments: the manufacturing support and manage-
ment department located in a downtown and an MFL located
a few kilometers away in the industrial area. The manufactur-
ing support and management department is in charge of the
design, production planning and scheduling, and marketing of
the products. Moreover, finance and administrative sections
are included in this department. The production process of the
MFL involves the production of the frames of windows/doors
and several assemblies in addition to the test and quality con-
trol phases. Figure 2 shows the layout of the uPVC part of the
MFL.

The window components, such as fittings, profiles,
and glasses, are provided by partner companies, accord-
ing to the window/door design specifications. The win-
dow frames are manufactured in the MFL. Nearly, 15
models of doors and windows are under production: tilt
and turn windows, slide hung, top light, sliding–folding,
center hinge/pivot, etc.

The problems with the current scheduling and control
architecture, which can be potentially improved by
using multi-agent-based dynamic decision-making, are
as follows:

Fig. 7 Manager agent architecture

Fig. 6 Negotiation between cell
agent and scheduler machine
agent for updating new schedule

3128 Int J Adv Manuf Technol (2017) 89:3123–3137

www.manaraa.com

& The manufacturing system is scheduled by using static
scheduling in the manufacturing support and management
department; thus, all the decisions are taken by this unit.

& The stations (machines) have no autonomous scheduling
unit for their operations.

& The system lacks real-time scheduling and is not flexible
in the case of dynamic customer demands.

& The scheduling system is not reactive to internal distur-
bances of the system.

The development of a multi-agent-based DSS to address
these problems is justified as follows:

& When the dynamic customer demands accrue, the dynam-
ic decision-making system can schedule the system in a
dynamic manner.

& The development of a multi-agent-based dynamic
decision-making system can be found optimal when
scheduling during a machine fails disturbance.

Fig. 9 Detailed design of scheduler machine agent

Fig. 8 Detailed design of cell agent

Int J Adv Manuf Technol (2017) 89:3123–3137 3129

www.manaraa.com

& The proposed system makes autonomous station level
scheduling.

& The proposedMAS communicates with the system in real
time.

3.1 System specification design

The system specification phase is the first part of the PM. The
system specification design phase consists of four sub-phases:
analysis overview, scenario overview, goal overview, and sys-
tem role overview. System goals are specified in the goal
overview diagram, resulting in a list of goals and sub-goals
with associated descriptors. This phase is responsible for the
identification of system goals, development of a set of scenar-
ios that have adequate coverage of the goals, identification of
functionalities linked to one or more goals, negotiation among
the types of agents, and determination of the scenarios of the
system. Figure 3 shows the goal overview diagram of the
system.

The scenario overview phase was developed by a set of
scenarios having an adequate coverage of the goals, providing
a process-oriented view of the system to be developed. The
system role overview defines a set of functionalities linked to
one or more goals and captures a piece of the system behavior.
Figure 4 shows the system role overview in which there are
four main roles: manager role, shop management role, cell
role, and negotiation management role.

The sub-goals are also designed in the system specification
stage. For example, four sub-goals of machine scheduling
after the arrival of unpredictable orders are defined: the ma-
chine is busy and has a task, the machine is free and has a task,
the machine is free and has no task, and the machine is loaded
and has no task.

3.2 Architecture design

This stage identifies the types of agents according to the PM in
which the roles of the agents in the system are determined.
This phase consists of three parts: data coupling overview,
agent role grouping overview, and system overview. The ne-
gotiation protocols for the agents are designed in this phase. A
system overview diagram is illustrated in Fig. 5. All the agents

are defined in this stage: manager agent, shop manager agent,
cell agent, MHS agent, scheduler machine agent, MHS re-
source agent, and machine resource agent. The last two agents
are interface agents, and the other five agents are software
agents used for the dynamic scheduling decision-making sys-
tem. The proposed system follows a top-down approach by
considering the real-time negotiation between all types of
agents. The negotiation protocols of the agents are shown in
Fig. 5 using the arrows. Protocols consist of an order protocol,
shop protocol, MHS negotiation protocol, machine negotia-
tion protocol, resource protocol, and machine resource
protocol.

In order to describe all the interaction protocols, we devel-
oped the interaction protocols depicted by using the agent
UML (AUML). Figure 6 shows an example of the negotiation
protocol corresponding to the cell agent, scheduler machine
agent, and MHS agent. This shows the negotiation between
the cell agent and the scheduler machine agent for updating a
new schedule in the machine and the concurrent communica-
tion with theMHS for transferring the material to the machine.
This communication between the machine agent and theMHS
agent is initiated by an MHS negotiation protocol. These ne-
gotiation protocols are coded in the Prometheus™ software.

3.3 Detailed design

In this stage, a detailed design is developed for each type of
agent. The agents receive messages from the main platform
event of their environment or other agents, which operate on
their plans; thus, they act according to the records in their
database.

For example, the manager agent manages the customers
and updates the new orders to the system. The manager agent

Table 1 Mapping
Prometheus modeling
concepts into JACK
concepts [34]

Prometheus entity JACK concept

Agent Agent

Capability Capability

Precept Event

Plan Plan

Data Belief Set

Action –

Fig. 10 Sequence diagram of
decision-making mechanism

3130 Int J Adv Manuf Technol (2017) 89:3123–3137

www.manaraa.com

uses its belief sets, plans, and message events to accomplish
this task. The architecture of the manager agent is shown in
Fig. 7 in the form of a Prometheus™ design view.

The cell agent manages and controls the cell level of a
factory, and this agent consists of two subagents namely the
MHS agent and the scheduler machine agent. The detailed
design of this agent is shown in Fig. 8.

The other agent playing an important role in the
rescheduling and dynamic scheduling of the cell level is the
scheduler machine agent. This agent consists of two data-
bases: machine status and machine negotiation results. The
detailed design of this agent is illustrated in Fig. 9.

3.4 Decision-making mechanism or rescheduling

An algorithm for rescheduling the system for dynamic cus-
tomer demands is proposed in this section. Figure 10 illus-
trates the sequence of the decision-making mechanism in the
proposed MAS. The manager agent informs a new or unpre-
dictable order to the shop manager agent. The shop manager
agent sends the related questions to the cell agent, and this
agent sends the questions to the scheduler machine agent
and the MHS agent. The scheduler machine agent communi-
cates with the machine resource agent in real time and sends
the related information to the cell agent. This agent by

Fig. 12 Manager Agent

Fig. 11 Code generation process

Int J Adv Manuf Technol (2017) 89:3123–3137 3131

www.manaraa.com

considering the information from the scheduler machine agent
answers the questions posed by the shop manager agent. The
shop manager agent by considering the information from the
cell level takes a decision and informs to the manager agent. If
the manager agent confirms this decision, it will send the
related information to the shop manager agent. The shop man-
ager agent creates a new schedule and a new subagent and
sends them to the cell agent and theMHS agent. The cell agent
sends the new data to the scheduler machine agent, and this
agent updates the new schedule to the machine.

4 Implementation

The generation code and implementation software were
started manually from the design stage. This makes it possible
to diverge the design and implementation stages [33] and gen-
erates a gap between them [34]. To bridge the gap, a method-
ology introducing refined design models that can be directly
implemented in an available programming language should be
used. The PM follows this approach, which is an advantage of
this methodology. The last stage (the detailed design phase) of
this methodology offers the models sufficiently close to the
concepts used in a specific agent-oriented programming lan-
guage named JACK [35]. Hence, the entities obtained during
the design can be directly transformed into the concepts used
in JACK. Table 1 shows the Prometheus entities being trans-
lated into their equivalent JACK concepts. It should be noted
that some entities (actor, goal, protocol, role, and scenario) are
not transformed into JACK concepts. The action concept is
not transformed into a JACK-specific concept, but it can be
implemented in the associated agent as a method.

Figure 11 illustrates a systematic method for the code gen-
eration process. This process generates a code by using the
Prometheus design tool (PDT) and converts this code into a
JACK concept. The user can press the generate button in the
code era catalog (JACK) to generate a JACK folder, which
contains several subfolders (agents, capabilities, data, events,
and plans), automatically. The same occurs for the capability,
data, message, and plan entities created in the model except
for the file extension and folder, which are sorted as depicted
in the tree diagram of JACK in Fig. 11.

A JACK developer environment (JDE) was used to import
the code generated by the PDT. In this process, according to
[34], five steps are followed: (a) the compiler utility submenu
available in the tool menu is chosen in the JDE; (b) the
Convert Non-JDE JACK is selected for converting the
existing JACK code; (c) the folder that contains the code gen-
erated by the PDT is introduced into a content list; and (d) after

Table 2 Impact factor for calculating number of squares

Product Impact factor

Window type A, B, C, D 0 m2 < size < 2.2 m2 1

Door type A, B 0 m2 < size < 2 m2 1.2

Door type C 0 m2 < size < 2 m2 1.3

Window type A size > 2.2 m2 1.15

Window type B size > 2.2 m2 1.25

Window type C, D size > 2.2 m2 1.45

Door type A size > 2.2 m2 1.35

Door type B size > 2.2 m2 1.45

Door type C size > 2.2 m2 1.65

Fig. 13 Simulation test platform [26, 36]

3132 Int J Adv Manuf Technol (2017) 89:3123–3137

www.manaraa.com

T
ab

le
3

C
us
to
m
er

de
m
an
d
fo
r
Ju
ly

in
Y
B
G
C
om

pa
ny

D
ay

W
in
do
w

D
oo
r

W
in
do
w
A
,B

,C
,D

0
<
si
ze

<
2.
2

W
in
do
w
A

si
ze

>
2.
2

W
in
do
w
B

si
ze

>
2.
2

W
in
do
w
C
,D

si
ze

>
2.
2

D
oo
r
A
,B

0
<
Si
ze

<
2.
2

D
oo
r
C
,

0
<
si
ze

<
2.
2

D
oo
r
A

si
ze

>
2.
2

D
oo
r
B

si
ze

>
2.
2

D
oo
r
C

si
ze

>
2.
2

N
um

be
r
of

sq
ua
re
s

1
22
0

26
0

10
0

60
60

50
50

60
50

50
61
7.
00

2
13
0

20
50

40
40

20
18
0.
00

3
17
0

30
10
0

70
30

26
7.
00

4
0

0
0.
00

5
40
0

15
0

20
0

20
0

50
50

50
64
2.
50

6
0

0
0.
00

7
22
0

40
22
0

40
26
8.
00

8
23
0

15
0

80
50

10
0

50
10
0

53
7.
00

9
22
0

13
0

10
0

12
0

13
0

39
4.
00

10
43
0

70
23
0

20
0

70
56
1.
50

11
0

0
0.
00

12
56
0

0
10
0

24
0

22
0

65
1.
00

13
48
0

50
12
0

10
0

26
0

50
70
0.
00

14
44
0

16
0

15
0

15
0

14
0

16
0

74
1.
50

15
46
0

40
60

20
0

20
0

40
58
8.
00

16
29
0

28
0

20
20

50
20
0

15
0

13
0

74
4.
50

17
0

0
0.
00

18
47
0

20
0

10
10
0

10
0

26
0

50
15
0

88
2.
00

19
0

73
0

50
0

23
0

89
9.
00

20
70

32
0

70
32
0

45
4.
00

21
14
0

44
0

10
0

40
40
0

40
78
1.
00

22
15
0

35
0

50
10
0

10
0

20
0

50
66
7.
50

23
17
0

40
0

70
10
0

10
0

10
0

10
0

10
0

77
0.
00

24
0

0
0.
00

25
0

34
0

10
0

14
0

10
0

46
4.
00

26
0

34
0

14
0

10
0

10
0

46
2.
00

27
14
0

16
0

40
10
0

10
0

60
35
3.
00

28
0

41
0

41
0

49
2.
00

29
14
0

44
0

80
10

50
44
0

69
2.
00

30
70

43
70

10
0

10
0

10
0

13
0

69
4.
50

31
0

0
0.
00

To
ta
l

14
,5
03
.0
0

Int J Adv Manuf Technol (2017) 89:3123–3137 3133

www.manaraa.com

defining the address and the folder name, the generate button
is pressed, and the new JDE project will be obtained.

Presently, the inside structure of the documents and their
augmentations are distinctive with a specific end goal readable
by the JDE. Lastly, after generating a few Java classes and
finishing the generated code, the JACK program can be easily
transferred into Java using the facilities provided by the JDE
and executed. Figure 12 illustrates the manager agent that
sends jobs to other agents. By using the customer demands,
the manager agent creates a list of operations. In addition, the
available schedule is chosen from the list. When a schedule is
created, the selected order information is sent to the shop
manager agent. After the shop manager agent accepts this
schedule, a new order is sent to the cell manager agent. The
cell manager agent cooperates with the required equipment,
which provides transportation, and raw materials and commu-
nicates with the machine agent and the MHS agent, which
help in the completion of the work during execution.

4.1 Simulation platform

In this section, the simulation test platform for evaluating the
proposed MAS is linked to the developed MAS. This effort
helps find a result very close to the real implementation be-
cause the hardware and software are considered simultaneous-
ly. The linked system is illustrated in Fig. 13. This platform
contains two main modules:

(a) Hardware simulation agent module—this belongs to the
CPN model of the system, and it is used to analyze the
behavior of the company.

(b) The proposed MASs—it is related to the scheduling and
control architecture of the system.

The hardware simulation characterized the physical actions
that occur in the manufacturing environment such as ma-
chines, robots, and MHSs. The hardware was modeled using
CPN. The communication module was developed based on an
XML tool. The multi-agent-based scheduling and control sys-
tem was used to send and receive information using a CPN
tool [36] via the communication module. In the simulation
platform, the manager agent was used to create dynamic cus-
tomer demands and send them to the system for evaluation,
thus, solving the problem by considering the hardware simu-
lation agent. A machine disturbance was created in the simu-
lation hardware agent, and the information regarding this dis-
turbance was sent to the MAS via the XML-based communi-
cationmodule. The DSSwas used to create and propose a new
schedule and send it to the hardware simulation agent.

5 Test scenarios and result

This section discusses two scenarios for evaluating the pro-
posed MAS in the MFL. The first scenario evaluates the re-
sponse of the system in terms of the dynamic customer de-
mands, and the second scenario focuses on the quantitative
indicators based on various production performance mea-
sures, such as lead time and throughput, for internal distur-
bances. To compare the current state and the future state, the
approach introduced in [37] is used to quantify the degree of
improvements. The number of units produced is considered
using the number of squares. Generally, the performance of
the manufacturing systems is measured in units/hour. As per
this convention, the performance in the case of anMFL should
be measured in terms of the number of windows/doors pro-
duced per hour or shift. However, in this case, the size and
complexity of windows/doors differ considerably. Hence, this
unit of measurement may not fairly reflect the performance of
the MFL. To overcome this problem and to establish a nor-
malized production rate and productivity, the number of
squares is used. Table 2 presents the impact factor for calcu-
lating the number of squares of the products. As examples, a
door type B with 1.8 m2 size is considered as 2.25 m2 and a
window type Awith 3.4 m2 size is considered as 3.91 m2.

Table 4 Result of simulation and conventional system for accepted
parts

Performance measures Conventional
DSS

Multi-agent-based
DSS

Total acceptance rate for
dynamic demand (%)

70.3 79.8

Makespan Cmax 204.53 182.16

Table 5 Summary of lead-time
experiment results Lead time

Scenario Type SD Mean LCL 95 % UCL 95 % CV%

2.1 Conventional 0.85 10.32 9.45 11.19 8.2

MAS 0.56 9.45 8.64 10.26 5.9

2.2 Conventional 3.457 17.26 15.894 18.626 20.02

MAS 2.24 13.756 12.49 15.022 16.2

3134 Int J Adv Manuf Technol (2017) 89:3123–3137

www.manaraa.com

In the simulation, the setup time was not considered, and it
was assumed that a failure of negotiation would never occur.
A robot and a conveyor were used for transportation, and the
orders were queued in the order of arrival. Each transport
action required 1 min, and the average processing time was
equal to 20 min. The tests considered the data corresponding
to the month of July. The adopted unit of time was 1/50th of a
minute as in the standard time data. Using the Welch method,
a warm-up period of 20 h was used to fill the machine queues
and obtain steady state results.

In the first scenario, the company categorized the cus-
tomers into two groups. Group one includes the customers
who order a high volume of products with long due dates,
whereas group two includes the customers who order a small
list of products with short due dates. The total daily production
capacity of the company is 22,300 squares. The competitive
strategy of the company for the month of July is providing at
least 10,000 squares for group one of the customers. This
article focuses on providing decisions for the second group
of customers, which deals with the dynamic demands. For
sketching this, the data related to July are used and the results
of both the current and newly developed systems are com-
pared. Normally every day, 5–10 requests with different due
dates are received from clients. The company uses the due
dates and the number of squares in deciding whether to accept
or reject the requests. Table 3 lists the customer demands
corresponding to the month of July and the number of squares.

In this work, the comparison between the scheduling ap-
proaches considered number of squares in a batch of orders in
July, aiming at reducing the makespan (Cmax). After running
the test platform for the proposed MAS by considering the
warm-up time, the dynamic demand was sent to the schedul-
ing system. Table 3 summarizes the total accepted number of

squares for this month and makespan achieved for each sched-
uling system. We have to mention that both the systems pro-
ducing windows have priority to produce doors. Therefore,
the system tries to finish the windows before the door. It starts
producing doors after finishing windows.

Based on the experimental results of the first scenario, the
best Cmax was founded by the proposed DSS. The rate of
acceptance of the multi-agent-based DSS is equal to 0.798,
and the rate of acceptance of the conventional system in July is
equal to 0.703. This rate shows that more products can be
produced by using the MAS than the conventional system
because the MAS can reschedule in the dynamic model
(Table 4).

The second scenario focuses on the quantitative indicators,
namely, lead time, throughput, and resource utilization, for the
case of internal disturbances. For evaluating the performance
of the system, two sub-scenarios are considered: a well-
functioning system with no disturbances and a 20 % probabil-
ity of a failure occurring in the profile-welding machine. The
probability distribution for the failure time was regarded as an
exponential distribution with a rate of 25. AWeibull distribu-
tion with a total availability of 85 % was used for the repair
time with the mean repair time as 60 min.

The experience gained from the simulation debugging and
testing allowed us to draw some conclusions concerning the
operation of the proposed MAS in the MFL. The system was
found to function robustly in accordance with the specifications
for both the normal operation and in the presence of disturbances.
Furthermore, the reconfigurability of the systemwas demonstrat-
ed by its accurate reactions to the introduction, removal, and
modification of manufacturing components. The average values
of standard deviations (SD) and the coefficient of variation (CV)
for each subtest scenario are presented in Tables 5, 6, and 7.

Table 6 Summary of throughput
experiment results Throughput

Scenario Type SD Mean LCL 95 % UCL 95 % CV%

2.1 Conventional 57.4 1211 1191 1231 4.73

MAS 48.48 1259 1251 1267 3.85

2.2 Conventional 109.7 803 711 895 13.66

MAS 89.6 980 908 1052 9.14

Table 7 Summary of resource
utilization experiment results Resource utilization

Scenario Type SD Mean LCL 95 % UCL 95 % CV%

2.1 Conventional 0.039 0.871 0.801 0.941 4.47

MAS 0.031 0.962 0.92 1.004 3.22

2.2 Conventional 0.054 0.69 0.774 0.848 7.82

MAS 0.044 0.921 0.895 0.974 4.77

Int J Adv Manuf Technol (2017) 89:3123–3137 3135

www.manaraa.com

The first sub-scenario of scenario two is the system oper-
ated predictably and has no disturbance. In this scenario, the
proposed MAS presents smaller values of manufacturing lead
time (9.45), higher values of throughput (1259), and higher
values of resource utilization (0.962) than the conventional
system (10.32, 1211, and 0.871, respectively). The better per-
formance of those systems is a result of the cooperation of the
autonomous entities.

The second sub-scenario of scenario two is the experimen-
tal test considering the occurrence of unexpected disturbances
in the welding machine. It is obvious that the performance
indicators degrade in the presence of disturbances. From the
analysis of lead time, throughput, and resource utilization, it
can be verified that the proposed MAS offers a better perfor-
mance than the conventional system.

6 Conclusion and future research

The dynamic rescheduling method is widely used in the mod-
ern production plants. This study attempts to solve the sched-
uling problems of theMFL by using amulti-agent-based DSS.
The proposed system is designed and developed in order to
solve scheduling complexities during a dynamic order change
and occurrence of internal disturbances in the MFL. The de-
sign uses the capabilities of the MAS in order to solve real-
time scheduling complexities. Feasible and effective sched-
ules are expected from negotiation/bidding mechanisms be-
tween agents. In this study, we tried to clarify the problems of
an MFL and how the MAS can be helpful for SMEs. The
MAS scheduling and control system is designed based on
the PM and implemented in the JACK platform. The simula-
tion platform based on a hybrid agent is used for simulation
and testing. This platform considers both the software (MAS)
and hardware of the system. A real case study was used for
simulation, and the results indicate that the proposed multi-
agent scheduling system outperforms the conventional ap-
proach as well as the dispatching-based production control
approach used in practice. Furthermore, the proposed system
performs better in terms of the running time because the MAS
scheduling system can take immediate actions to reschedule
tasks in the event of high failures. The developed method
offers three advantages: (a) the dynamic order behavior and
the capability to reconfigure the system with respect to the
internal disturbances are considered simultaneously; (b) the
system is developed based on general-purpose design meth-
odology (i.e., Prometheus methodologyTM) and is not tied to
any specific model in the software platform; and (c) for
modeling the internal disturbances of the system, a simulation
test platform is linked to the developed multi-agent-based
DSS. The use of the developed system needs moderate knowl-
edge on modeling manufacturing systems by Petri nets; this
concern might be considered as disadvantage of this approach.

References

1. Young RE, Vesterager J (1990) An approach to implementing CIM
in small and medium size companies. International Journal of NIST
Special Publication 785:63–79

2. Levy M, Powell P (2000) Information systems strategy for small
and medium sized enterprises: an organisational perspective. J
Strateg Inf Syst 9:63–84

3. Bai D, Zhang Z-H, Zhang Q (2016) Flexible open shop scheduling
problem to minimize makespan. Comput Oper Res 67:207–215

4. Vatankhah Barenji R, Hashemipour M, Guerra-Zubiaga DA (2015)
A framework formodelling enterprise competencies: from theory to
practice in enterprise architecture. Int J Comput Integr Manuf 28:
791–810

5. Monostori L, Váncza J, Kumara SR (2006) Agent-based systems
for manufacturing. CIRPAnn Manuf Techn 55:697–720

6. M. Paolucci and R. Sacile (2016) Agent-based manufacturing and
control systems: new agile manufacturing solutions for achieving
peak performance: CRC Press

7. Lu SH, Kumar P (1991) Distributed scheduling based on due dates
and buffer priorities. IEEE Trans Autom Control 36:1406–1416

8. A. V. Barenji, R. V. Barenji, and M. Hashemipour (2013) Structural
modeling of a RFID-enabled reconfigurable architecture for a flex-
ible manufacturing system, in Smart Objects, Systems and
Technologies (SmartSysTech), Proceedings of 2013 European
Conference on, pp. 1–10

9. Barenji AV, Barenji RV, Hashemipour M (2014) A frameworks for
structural modelling of an RFID-enabled intelligent distributed
manufacturing control system. S Afr J Ind Eng 25:48–66

10. ShenW, Hao Q, Yoon HJ, Norrie DH (2006) Applications of agent-
based systems in intelligent manufacturing: an updated review. Adv
Eng Inform 20:415–431

11. Zhong RY, Huang GQ, Lan S, Dai Q, Zhang T, Xu C (2015) A two-
level advanced production planning and scheduling model for
RFID-enabled ubiquitous manufacturing. Adv Eng Inform 29:
799–812

12. Kerzner HR (2013) Project management: a systems approach to
planning, scheduling, and controlling. John Wiley & Sons,
Hoboken

13. Yoon HJ, ShenW (2008) A multiagent-based decision-making sys-
tem for semiconductor wafer fabrication with hard temporal con-
straints. IEEE Trans Semicond Manuf 21:83–91

14. M. Pinedo (2015) Scheduling: Springer. doi: 10.1007/978-3-319-
26580-3

15. Ramamritham K, Stankovic JA (1994) Scheduling algorithms and
operating systems support for real-time systems. Proc IEEE 82:55–
67

16. H. J. Yoon and W. Shen 2005 Agent-based scheduling mechanism
for semiconductor manufacturing systems with temporal con-
straints, in IEEE International Conference Mechatronics and
Automation, pp. 1123–1128

17. Caridi M, Cavalieri S (2004) Multi-agent systems in production
planning and control: an overview. Prod Plan Control 15:106–118

18. Gibson MR, Ohlmann JW, Fry MJ (2010) An agent-based stochas-
tic ruler approach for a stochastic knapsack problemwith sequential
competition. Comput Oper Res 37:598–609

19. R. Smith, The contract net protocol: highlevel communication and
control in a distributed problem solver, 1980, IEEE Trans. on
Computers, C, 29, 12

20. Valckenaers P, Van Brussel H (2005) Holonic manufacturing exe-
cution systems. CIRPAnn Manuf Techn 54:427–432

21. Kaplanoğlu V (2014) Multi-agent based approach for single ma-
chine scheduling with sequence-dependent setup times and ma-
chine maintenance. Appl Soft Comput 23:165–179

3136 Int J Adv Manuf Technol (2017) 89:3123–3137

http://dx.doi.org/10.1007/978-3-319-26580-3
http://dx.doi.org/10.1007/978-3-319-26580-3

www.manaraa.com

22. Chen K-Y, Chen C-J (2010) Applying multi-agent technique in
multi-section flexible manufacturing system. Expert Syst Appl 37:
7310–7318

23. L. Padgham and M. Winikoff (2002) Prometheus: a methodology
for developing intelligent agents, in International Workshop on
Agent-Oriented Software Engineering, pp. 174–185

24. L. Padgham and M. Winikoff (2002) Prometheus: a pragmatic
methodology for engineering intelligent agents, in Proceedings of
the OOPSLA 2002 Workshop on Agent-Oriented Methodologies,
pp. 97–108

25. Barenji RV, Barenji AV, Hashemipour M (2014) A multi-agent
RFID-enabled distributed control system for a flexible manufactur-
ing shop. Int J Adv Manuf Technol 71:1773–1791

26. Barenji AV, Barenji RV, Hashemipour M (2016) Flexible testing
platform for employment of RFID-enabled multi-agent system on
flexible assembly line. Adv Eng Softw 91:1–11

27. Baykasoglu A, Gorkemli L (2016) Dynamic virtual cellular
manufacturing through agent-based modelling. Int J Comput
Integr Manuf:1–16

28. Sahin C, Demirtas M, Erol R, Baykasoğlu A, Kaplanoğlu V (2015)
A multi-agent based approach to dynamic scheduling with flexible
processing capabilities. J Intell Manuf:1–19

29. Renna P (2010) Job shop scheduling by pheromone approach in a
dynamic environment. Int J Comput Integr Manuf 23(5):412–424

30. Padgham L, Winikoff M (2005) Prometheus: a practical agent-
oriented methodology. Agent-oriented methodologies:107–135

31. L. Padgham, J. Thangarajah, and M. Winikoff (2007) The
Prometheus design tool—a conference management system case
study, in International Workshop on Agent-Oriented Software
Engineering, pp. 197–211

32. L. Padgham and M. Winikoff (2005) Developing intelligent agent
systems: a practical guide vol. 13: John Wiley & Sons

33. R. H. Bordini, M. Dastani, and M. Winikoff (2006) Current issues
in multi-agent systems development, in International Workshop on
Engineering Societies in the Agents World, pp. 38–61

34. Gascueña JM, Fernández-Caballero A (2011) Agent-oriented
modeling and development of a person-following mobile robot.
Expert Syst Appl 38:4280–4290

35. M. Winikoff (2005) JACK™ intelligent agents: an industrial
strength platform, in Multi-Agent Programming, ed: Springer, pp.
175–193

36. A. Shaygan and R. V. Barenji (2016) Simulation platform for multi
agent based manufacturing control system based on the hybrid
agent, arXiv preprint arXiv:1603.07766

37. Gurumurthy A, Kodali R (2011) Design of lean manufacturing
systems using value stream mapping with simulation: a case study.
J Manuf Technol Manag 22:444–473

Int J Adv Manuf Technol (2017) 89:3123–3137 3137

www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	A dynamic multi-agent-based scheduling approach for SMEs
	Abstract
	Introduction
	Prometheus methodology
	Case study and design of the proposed multi-agent DSS
	System specification design
	Architecture design
	Detailed design
	Decision-making mechanism or rescheduling

	Implementation
	Simulation platform

	Test scenarios and result
	Conclusion and future research
	References

